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1. INTRODUCTION

Given a real normed linear space X and a compact Hausdorff space Q,
let C(Q, X) denote the space of continuous functions from Q to X. We
equip C with the uniform norm defined by |l /|| = max,, || Ag)l, e C.
Best linear approximation of functions in these normed function spaces has
been systematically studied by Zuhovickii, Krein, and Ste¢kin [6], and
L. W. Johnson [3], [4]. Our aim in this note is to obtain characterization
and uniqueness theorems analogous to those of the real-valued case
(X = the real field R) by a direct reduction to the known results of the
real-valued situation, for the most part. I am much indebted to Professor
E. W. Cheney for the suggestion that this should be possible.

2. CHARACTERIZATION THEOREMS

Let X* denote the dual space, and B(X*) the closed unit ball of X*. In
what follows X* carries the weak-star topology.

Given fe C(Q, X), define the real-valued function fe C(Q X B(X*), R)
by f(q, L) = L(f{q)), (g, L)€ Q X B(X*). (With the product topology,
Q X B(X*) is compact.) It is easy to verify that the uniform norm of f,
|1l = maxq, peoxaxs | F(g, L) = || fli; and that the critical point set of f,
crit(f) = {(g, L) | L(f(¢)) = £ fII}. Note that f(¢g, —L) = —f(g, L).

From this, we see at once that f— f is a norm-preserving linear map of
C(Q, X) into C(Q x B(X*), R), so subspaces V C C(Q, X) map onto sub-
spaces V ={o|veV}CC(Q X B(X*), R). Hence the problem of best
linear approximation in C(Q, X) is transferred into the corresponding real-
valued problem in C(@ X B(X*), R). Explicitly: given a subspace V'C C(Q, X)
and fe C(Q, X), v, in ¥ is a best approximation out of ¥ to fif and only if 7,
in Vis a best approximation to f.
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In Theorems 1 and 2 to follow, we simply convert classic characterizations
of real-valued best approximation into vector-valued ones.

THEOREM 1 (Kolmogorov-type characterization). Let V be a subspace of
C(Q, X), fe C. A necessary and sufficient condition that v, (in V) be a best
approximation to [ is the following:

(K) for each veV there exists (q,L)ye Q X B(X*) such that
L(f(q) — vq)) = |l — vy || and satisfying L(v(q)) < O.

Moreover, if for each v in V, v 5 vy, there exists (q, L) with

L(f(q) — v(q)) = ||.f — v, |, and satisfying L(v(q)) < O, v, is the unique best
approximation.

Proof. In C(Q X B(X*),R) &, is a best approximation to f if and only
if the well-known Kolmogorov condition holds: for each & € ¥ there exists
(g, L) e crit(f — 5,) satisfying (f (g, L) — 94(g, L)) - #(g, L) < 0. Since (g, —L)
and (g, L) are simultaneously critical points of f — #, , the asserted character-
ization follows.

We note that Theorem 1 at once implies the necessity (the sufficiency
is clear) of the following characterization of best approximations involving
only critical points (for fe C, crit(f) = {g€ Q { tf @Dl = 111D

A necessary and sufficient condition that v, be best to f'is that for each v in V
there exists ¢ € crit(f — v,) such that | f — v, || < || f(q) — v(¢g)ll. With more
effort, this characterization was obtained in the somewhat different setting
of Johnson [3].

The characterization as formulated in Theorem 1 was obtained in a setting
covering the case of X a smooth finite-dimensional normed space in
Johnson [3], and by Zuhovickii for X a Hilbert space (see [6]).

In practice, simpler characterizations may result from restricting the
functionals in B(X*) to the set Ep B(X*) of extreme points of B(X™).
ILe., condition (K) in Theorem 1 may be replaced by (K¢), where (K¢) is
obtained from (K) by just replacing “(g, L) € O X B(X*)” by “(g, L) Q X
Ep B(X*).” The following argument shows that this is possible. Given g € 0,
let S(f(q) — vo(q)) = {L € BLX*) | L(f(q) — vo(q)) = I /(q) — vo(@)I}}; this
set is weak-star compact and an extremal subset of B(X*), so the extreme
points of S(f(g) — vy(q)) are precisely the extreme points of B(X™*) in
S(f(q) — vi(g)). Now suppose L in S(f(g) — ve(g)) satisfies L(v(g)) <O,
as in (K). The evaluation map ¢: L + L(v(g)) is weak-star continuous and
a4 = MiNLes(s(p) v () L(g)) < 0. We now require the following result from
extreme point theory (see K&the [5, Section 25,p.333]): (1) If T'is a continuous
linear map of one locally convex space E into another, then for any compact
C C E, every extreme point of the image 7(C) is the image of some extreme
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point of C. a is an extreme point of p[S(f(g) — vo(g))] C R, so by (1) there is
an extreme point L’ of S(f(g) — vy(q)) satisfying a = o(L) = L'(v(g)).

In the examples we now discuss, (K¢ will be used as the characterizing
condition.

ExampLE 1. Uniform Approximation in C(Q, £,,”). The uniform norm is
| Al = maxeep maxicicn | 1)), B = (hy ,..., hy,) in C. The dual (£,)* = £,",
so has extreme points {4-e;,i = 1,...,n} (e,..., e, are the standard unit
coordinate vectors of R"®). So, (g, L) € @ X Ep B((£.")*) satisfies L(h(q)) =
7] just in case || A(q)llo = || 2}, and L €{sgn hy(q) - ¢;| | h(q)] = Il A(q)ll.c}.

With these observations recorded, Theorem 1 assumes the following
concrete form.

Let ¥ be a subspace of C(Q, 4.7, f = (f1 . fa) €C. y = (Boy ,ovrr Von)
in V'is a best approximation to £if and only if the following condition holds:

For each v = (v ,..., v,) in V there exist ge @ and i = 1,..., n such that
| f@) — vo@) = ||f — vy |}, satisfying (fi(q) — v5(q)) - v:(g) < O.

ExampLE 2 Uniform Approximation in C(Q, £,*). The uniform norm is
£ = maxeeq (| @) + - + | h(@)]), A in C. The dual (4)* =77,
so has extreme points {3, ose;: o; = +1}. Hence (¢, L) € @ x Ep B{(£;)™)
satisfies L{A(g)) = || #|| just in case || A(g)|l, = || 2|, and

Le z sgn h](q) T ey + Z C;"€;| 0y — :tl

Jihi(@)£0 ihil@)=0
for the i such that A,(q) = 0(.

Theorem 1 here reads as follows.

Let ¥ be a subspace of C(Q, ™), f = (f1,-S) EC. 1y = (Vg1 5-us Vpn)
in V is a best approximation to fif and only if the following condition holds:

For each v = (v ,..., v,) in V there exists ¢ such that || f(g) — vyl =
Il.f — v, |, satisfying

2 sgn(fi(q) — voi(9)) * v5(9) < > | odg)l.
3:f (@) —vq;{q) #0 i:f (@) —vg;(2)=0

THEOREM 2 (0 € convex hull finite-dimensional characterization). Let V
be an l-dimensional subspace of C(Q, X). The following condition is necessary
and sufficient that v, (in V') be a best approximation to f:

There exist r elements (qy , Ly),..., (¢, L) € O X B(X*), r <1+ 1, such
that L(f(q) — vo(q)) = || f — vy |, and barycentric coordinates (X ,..., A,)
such that for all v in V, A Ly(v(qy)) + -+ + AL (v(g,)) = 0.

In addition, the elements (q; , L;) may be chosen in Q X Ep B(X™).
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Proof. In C(Q x B(X*),R), V is also /-dimensional and the classic
0 € convex hull characterization that 7, in ¥ be a best approximation to f
reads: there are r (< /+ 1) points (¢, , Ly),..., (g, , L,) e crit( f — ©,) and
barycentric coordinates (A, ,..., A,) satisfying (*)

Z Ailsgn(f — De)(g: , L)) - 5(g;, L) = O forall peV.
i=1

Since (g,, L;) and (g;, —L,) both belong to crit( f — ,), we choose the
critical point (g; , L,) so that (f — 6)(¢:, L;) == ||.f — ¥, |l. (*) now translates
to the condition given.

We now show how only extreme points need be used. Let V
have basis ovy,...,v;, put Py = (Lvy(q),..., Lv(g)), and let U =
{Pqn (g, L)e @ x B(X*) satisfies L(f(q) —vo(q)) =/ —wl}. U is a
compact subset of R”, and what has been established so far simply shows that
0 is in the convex hull of U. By the finite-dimensional Krein—-Milman theorem
and Carathéodory’s theorem, 0 is a convex linear combination of s (< / + 1)
extreme points P p) ..., P,y of U. Fix i =1,..,s and consider the
continuous linear map L+ (Lvy(q,),..., Lv(g;)) from X* to R*. Taking the
compact C = S(f(g,) — v,(g;)) in the result (}) cited above, it follows that
there is an extreme point L;" in S(f(g;) — vy(g:)) such that P 1) = P 11 -

Adapting the terminology of Collatz [2] to the present vector-valued
situation, call any compact subset K C Q X B(X*) an H-set for the triple
(V, vy, f) if K satisfies the following two conditions:

(D) L(f(@) — volg) = II.f — vl for all (¢, L) € K,
(2) for each v e ¥V there exists (g, L) € K satisfying L(v(q)) < 0.

With this terminology, Theorem 1 shows that (i) v, is a best approximation
to fif and only if {(g, L) | L(f(qg) — vy(q)) = ||f — v, ||} is an H-set; (ii) If K
is any H-set for (V, v, , f), then v, is a best approximation to f.

After Theorem 2, just as in the real-valued situation, the Kolmogorov-type
characterization of Theorem 1 for finite-dimensional ¥ can be improved as
follows. If dim ¥V = [, v, is a best approximation to f if and only if there is
an H-set for (V, v, , f) of cardinality < / 4 1. In addition, it is easy to verify
that any H-set for (V,v,,f) contains an H-set of cardinality << /41
(consider the argument in the real-valued case that leads from Kolmogorov-
type characterization to the O € convex hull one in the finite-dimensional case).
{(q, L., (q. , L)} is an H-set for (V, v, , f) then v, is also a best approxi-
mation to f on {g, ,..., 4-} and || f — v | = min,e, max,;<, [ f(g2) — v(g)ll.
So as for real-valued approximation, in principle a finite-dimensional linear
vector-valued problem can be discretized.
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3. THE UNIQUENESS OF BEST LINEAR APPROXIMATION

Following Cheney and Wulbert [1], a subset K of Q is termed an a-set
for subspace V if K = crit(f — vy), where f (in C) has best approximation ¢,
(in V). An «-set is thus the set of first coordinates of a certain H-set for ¥,
and the H-sets built on «-sets are adequate to characterize any best approxi-
mation from V. Say that ¥ satisfies condition (C) if no nonzero function in ¥
vanishes identically on an «-set of V.

THEOREM 3. Condition (C) is necessary for best approximations out of V
to be unique (When they exist at all). If X is strictly convex, condition (C) is also
sufficient for unicity; but if X is not strictly convex, condition (C) is not sufficient.

Proof. Assume best approximations are unique, but suppose K is an
a-set on which some nonzero v, in V vanishes identically. Choose fin C
such that K = crit(f) and f has 0 as best approximation. Define % in C by
h(g) = ([ voll — lvo(@ID(f (2)/| f1). We have|| A |} = || v, || and {(g, L) | L(A(g)) =
MR} = {(g, LY | L(f(g)) = || f|}}. From this, the Kolmogorov-type character-
ization of Theorem 1 shows that O is a best approximation to h. But
1A(g) — vl < | g ll, g € O, s0 also v, is a best approximation to 4. Hence
V satisfies condition (C).

Assume that X is strictly convex and condition (C) holds. Suppose f
(not in V) has two best approximations v;, v, in V. Clearly v, is a best
approximation to 2f —wv,, and as ||2f—uv; — ] < 2[|f— v,], also
vy is a best approximation to 2f — v;. | 2f(g) — v5(q) — v} <
17 (@) — 2@l + 1 £(@) — vo(@)ll < 211 F — vy, s0 for g € critQf — v, — oy)
I(f(q) — vi(@) + (f(@) — vo@)ll = | (@) — v @il + || f(g) — vo(q)l] and
1f(q) — ol = 1 f{g) — ve(g)ll. Since X 1is strictly convex, this implies
7 (@) — v{q) = f(g) — v1(q), s0 v, — v, vanishes on the a-set crit(2f — v; — v,).

Finally assume X is not strictly convex. It is well known (and easy to see)
that there is a one-dimensional subspace ¥ and a point f not in ¥ having
more than one best approximation out of V. By taking the constant functions
corresponding to V and f, we get a one-dimensional subspace of C(Q, X)
satisfying condition (C) but not admitting unique best approximations.

Stated as a complete characterization of subspaces admitting unique best
approximations, Theorem 3 was first obtained by Cheney and Wulbert [1]
for ¥ = R, and for a setting covering the case X strictly convex in Johnson [4].
Condition (C) deserves a little more examination. When ¥ is finite-
dimensional, it can readily be shown that condition (C) is equivalent to the
zero and interpolation conditions on ¥V given by Zuhovickii, Krein, and
Steckin [6] as necessary and sufficient for ¥ to admit unique best approxi-
mations (some relaxation of their additional restrictions on X is possible).
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Further, if condition (C) is regarded as a uniqueness criterion, the class of
a-sets is adequate to build H-sets characterizing any best approximation and
to decide the uniqueness question. Another class of sets introduced below,
related to o-sets by a minimal property, also performs both these functions.

By virtue of Zorn’s lemma, two facts hold in general: given fhaving a best
approximation v, n V, (1) any H-set for (¥, v, , f) contains a minimal H-set;
(2) crit(f — v,) contains a compact set K minimal with respect to the property
that v, is a best approximation to fon K. If ¥ is /-dimensional, no transfinite
argument is necessary and both a minimal H-set and X have cardinality
<I+ 1.

Given f having a best approximation v, in V, a compact set K having
property (2) will be termed an y-set for V. n-sets are thus adequate as bases
for H-sets characterizing best approximations, and further they can replace
a-sets in condition {(C)—i.e., condition (C} is equivalent to condition {C'):
no nonzero member of ¥ vanishes identically on an n-set. Clearly (C") implies
(C). If condition (C') fails, choose an »-set K for which there is a nonzero v*
in V vanishing identically on K, which we can take with || v* || = 1. Choose f
in C having 0 as best approximation such that 0 is also a best approximation
to f on K. Put h(g) = (1 —[e*@f(@. [hll=1f] and critth) =
crit(f) N {g | v*(g) = 0} D K. Given v in ¥, there exists (g, L} € Q X B(X*)
such that L(f(g)) = || fIl, with g € K, satisfying L(z(g)) < 0. h(g) — v(g)l| =
L(Ah(g) — v(g)) = L(k(q)) = L(f(q)) = |l k], so A has 0 as best approximation
and v* vanishes identically on the a-set crit(#). Hence (C) fails if (C') does.

For finite-dimensional ¥, minimal H-sets can be identified independently
of any approximation problem, so n-sets are thereby identified also. Such an
identification runs as follows.

d elements (q, , Ly),..., (g4, Ly) of O X B(X*) form a minimal H-set for V'
if and only if the following conditions hold:

(1) L,,..., L; are norm-one functionals attaining their norm on the
unit sphere of X;

(2) all the distinct functionals in pairs having the same first coordinate
attain their norm at some one point of the unit sphere of X;

. (3) there are unique positive barycentric coordinates A, ,..., A; such that
Y1 AL(v(g)) = Oforallyin V.

(3) in turn can be given the following matrix formulation. Choosing
a basis v,..,v, for ¥V, (3) holds just in case the d x [ matrix
A = [Lwvlg))ie1.....4:5-1.....; has the following two properties:

(1) rank 4 =d— 1.
(2) There are d — 1 columns of A, say with indices j, << -+ < j;,,
such that for i = 1,...,d det A[1,...,i — 1,i+ 1,...;d | jy 5., Jo_;] 7 0 and
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all the (—1)*det A[1,...,i — 1,i + 1,...,d | j; ,..., Ja_s] have the same sign.
(Aliy 5oy By | J1 5e--» Jo] denotes the u X v submatrix of 4 formed from the
intersections of the rows of 4 having indices i; < -+ <C i, with the columns
of A having indices j; < -+ < j,.)
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