JOURNAL OF APPROXIMATION THEORY 14, 218-224 (1975)

Characterization and Uniqueness of Best Uniform Vector-Valued Linear Approximation

PAUL SCHWARTZ

Department of Mathematics, University of Texas, Austin, Texas 78712 Communicated by E. W. Cheney

1. INTRODUCTION

Given a real normed linear space X and a compact Hausdorff space Q, let C(Q, X) denote the space of continuous functions from Q to X. We equip C with the uniform norm defined by $||h|| = \max_{q \in Q} ||h(q)||$, $h \in C$. Best linear approximation of functions in these normed function spaces has been systematically studied by Zuhovickii, Krein, and Stečkin [6], and L. W. Johnson [3], [4]. Our aim in this note is to obtain characterization and uniqueness theorems analogous to those of the real-valued case $(X = \text{the real field } \mathbb{R})$ by a direct reduction to the known results of the real-valued situation, for the most part. I am much indebted to Professor E. W. Cheney for the suggestion that this should be possible.

2. CHARACTERIZATION THEOREMS

Let X^* denote the dual space, and $B(X^*)$ the closed unit ball of X^* . In what follows X^* carries the weak-star topology.

Given $f \in C(Q, X)$, define the *real-valued* function $\overline{f} \in C(Q \times B(X^*), \mathbb{R})$ by $\overline{f}(q, L) = L(f(q))$, $(q, L) \in Q \times B(X^*)$. (With the product topology, $Q \times B(X^*)$ is compact.) It is easy to verify that the uniform norm of \overline{f} , $\|\overline{f}\| = \max_{(q,L) \in Q \times B(X^*)} |f(q,L)| = \|f\|$; and that the critical point set of \overline{f} , crit $(\overline{f}) = \{(q,L) \mid L(f(q)) = \pm \|f\|\}$. Note that $\overline{f}(q, -L) = -\overline{f}(q, L)$.

From this, we see at once that $f \mapsto \overline{f}$ is a norm-preserving linear map of C(Q, X) into $C(Q \times B(X^*), \mathbb{R})$, so subspaces $V \subseteq C(Q, X)$ map onto subspaces $\overline{V} = \{\overline{v} \mid v \in V\} \subseteq C(Q \times B(X^*), \mathbb{R})$. Hence the problem of best linear approximation in C(Q, X) is transferred into the corresponding real-valued problem in $C(Q \times B(X^*), \mathbb{R})$. Explicitly: given a subspace $V \subseteq C(Q, X)$ and $f \in C(Q, X)$, v_0 in V is a best approximation out of V to f if and only if \overline{v}_0 in V is a best approximation to \overline{f} .

Copyright © 1975 by Academic Press, Inc. All rights of reproduction in any form reserved.

In Theorems 1 and 2 to follow, we simply convert classic characterizations of real-valued best approximation into vector-valued ones.

THEOREM 1 (Kolmogorov-type characterization). Let V be a subspace of C(Q, X), $f \in C$. A necessary and sufficient condition that v_0 (in V) be a best approximation to f is the following:

(K) for each $v \in V$ there exists $(q, L) \in Q \times B(X^*)$ such that $L(f(q) - v_0(q)) = ||f - v_0||$ and satisfying $L(v(q)) \leq 0$.

Moreover, if for each v in V, $v \neq v_0$, there exists (q, L) with $L(f(q) - v_0(q)) = ||f - v_0||$, and satisfying L(v(q)) < 0, v_0 is the unique best approximation.

Proof. In $C(Q \times B(X^*), \mathbb{R})$ \overline{v}_0 is a best approximation to \overline{f} if and only if the well-known Kolmogorov condition holds: for each $\overline{v} \in \overline{V}$ there exists $(q, L) \in \operatorname{crit}(\overline{f} - \overline{v}_0)$ satisfying $(\overline{f}(q, L) - \overline{v}_0(q, L)) \cdot \overline{v}(q, L) \leq 0$. Since (q, -L) and (q, L) are simultaneously critical points of $\overline{f} - \overline{v}_0$, the asserted characterization follows.

We note that Theorem 1 at once implies the necessity (the sufficiency is clear) of the following characterization of best approximations involving only critical points (for $f \in C$, crit $(f) = \{q \in Q \mid ||f(q)|| = ||f||\}$).

A necessary and sufficient condition that v_0 be best to f is that for each v in V there exists $q \in \operatorname{crit}(f - v_0)$ such that $||f - v_0|| \leq ||f(q) - v(q)||$. With more effort, this characterization was obtained in the somewhat different setting of Johnson [3].

The characterization as formulated in Theorem 1 was obtained in a setting covering the case of X a smooth finite-dimensional normed space in Johnson [3], and by Zuhovickii for X a Hilbert space (see [6]).

In practice, simpler characterizations may result from restricting the functionals in $B(X^*)$ to the set Ep $B(X^*)$ of extreme points of $B(X^*)$. I.e., condition (K) in Theorem 1 may be replaced by (K^e), where (K^e) is obtained from (K) by just replacing " $(q, L) \in Q \times B(X^*)$ " by " $(q, L) \in Q \times$ Ep $B(X^*)$." The following argument shows that this is possible. Given $q \in Q$, let $S(f(q) - v_0(q)) = \{L \in B(X^*) \mid L(f(q) - v_0(q)) = \|f(q) - v_0(q)\|\}$; this set is weak-star compact and an extremal subset of $B(X^*)$, so the extreme points of $S(f(q) - v_0(q))$ are precisely the extreme points of $B(X^*)$ in $S(f(q) - v_0(q))$. Now suppose L in $S(f(q) - v_0(q))$ satisfies $L(v(q)) \leq 0$, as in (K). The evaluation map $\varphi: L \mapsto L(v(q))$ is weak-star continuous and $a = \min_{L \in S(f(q) - v_0(q))} L(v(q)) \leq 0$. We now require the following result from extreme point theory (see Köthe [5, Section 25, p. 333]): (†) If T is a continuous linear map of one locally convex space E into another, then for any compact $C \subseteq E$, every extreme point of the image T(C) is the image of some extreme point of C. a is an extreme point of $\varphi[S(f(q) - v_0(q))] \subset \mathbb{R}$, so by (†) there is an extreme point L' of $S(f(q) - v_0(q))$ satisfying $a = \varphi(L') = L'(v(q))$.

In the examples we now discuss, (K^e) will be used as the characterizing condition.

EXAMPLE 1. Uniform Approximation in $C(Q, \ell_{\infty}^n)$. The uniform norm is $||h|| = \max_{q \in Q} \max_{1 \le i \le n} |h_i(q)|, h = (h_1, ..., h_n)$ in C. The dual $(\ell_{\infty}^n)^* = \ell_1^n$, so has extreme points $\{\pm e_i, i = 1, ..., n\}$ $(e_1, ..., e_n$ are the standard unit coordinate vectors of \mathbb{R}^n). So, $(q, L) \in Q \times \text{Ep } B((\ell_{\infty}^n)^*)$ satisfies L(h(q)) = ||h|| just in case $||h(q)||_{\infty} = ||h||$, and $L \in \{\text{sgn } h_j(q) \cdot e_j \mid |h_j(q)| = ||h(q)||_{\infty}\}$.

With these observations recorded, Theorem 1 assumes the following concrete form.

Let V be a subspace of $C(Q, \ell_{\infty}^{n})$, $f = (f_1, ..., f_n) \in C$. $v_0 = (v_{01}, ..., v_{0n})$ in V is a best approximation to f if and only if the following condition holds:

For each $v = (v_1, ..., v_n)$ in V there exist $q \in Q$ and i = 1, ..., n such that $|f_i(q) - v_{0i}(q)| = ||f - v_0||$, satisfying $(f_i(q) - v_{0i}(q)) \cdot v_i(q) \leq 0$.

EXAMPLE 2 Uniform Approximation in $C(Q, \ell_1^n)$. The uniform norm is $||h|| = \max_{q \in Q} (|h_1(q)| + \dots + |h_n(q)|)$, h in C. The dual $(\ell_1^n)^* = \ell_{\infty}^n$, so has extreme points $\{\sum_{i=1}^n \sigma_i e_i : \sigma_i = \pm 1\}$. Hence $(q, L) \in Q \times \text{Ep } B((\ell_1^n)^*)$ satisfies L(h(q)) = ||h|| just in case $||h(q)||_1 = ||h||$, and

$$L \in \left\{ \sum_{j:h_j(q) \neq 0} \operatorname{sgn} h_j(q) \cdot e_j + \sum_{i:h_i(q) = 0} \sigma_i \cdot e_i \right| \sigma_i = \pm 1$$

for the *i* such that $h_i(q) = 0 \right\}.$

Theorem 1 here reads as follows.

Let V be a subspace of $C(Q, \ell_1^n)$, $f = (f_1, ..., f_n) \in C$. $v_0 = (v_{01}, ..., v_{0n})$ in V is a best approximation to f if and only if the following condition holds: For each $v = (v_1, ..., v_n)$ in V there exists q such that $||f(q) - v_0(q)||_1 = ||f - v_0||$, satisfying

$$|v_0||$$
, satisfying

$$\sum_{n=1}^{\infty} \sup\{f(a) = v_n(a)\} + v(a) \leq \sum_{n=1}^{\infty} |v(a)|$$

$$\sum_{j:f_{j}(q)-v_{0j}(q)\neq 0} \operatorname{sgn}(f_{j}(q)-v_{0j}(q)) \cdot v_{j}(q) \leqslant \sum_{i:f_{i}(q)-v_{0i}(q)=0} |v_{i}(q)|$$

THEOREM 2 ($0 \in \text{convex hull finite-dimensional characterization}$). Let V be an l-dimensional subspace of C(Q, X). The following condition is necessary and sufficient that v_0 (in V) be a best approximation to f:

There exist r elements $(q_1, L_1), ..., (q_r, L_r) \in Q \times B(X^*), r \leq l+1$, such that $L(f(q_i) - v_0(q_i)) = ||f - v_0||$, and barycentric coordinates $(\lambda_1, ..., \lambda_r)$ such that for all v in V, $\lambda_1 L_1(v(q_1)) + \cdots + \lambda_r L_r(v(q_r)) = 0$.

In addition, the elements (q_i, L_i) may be chosen in $Q \times \text{Ep } B(X^*)$.

Proof. In $C(Q \times B(X^*), \mathbb{R})$, \overline{V} is also *l*-dimensional and the classic $0 \in \text{convex}$ hull characterization that \overline{v}_0 in \overline{V} be a best approximation to \overline{f} reads: there are $r \ (\leq l+1)$ points $(q_1, L_1), ..., (q_r, L_r) \in \text{crit}(\overline{f} - \overline{v}_0)$ and barycentric coordinates $(\lambda_1, ..., \lambda_r)$ satisfying (*)

$$\sum_{i=1}^r \lambda_i [\operatorname{sgn}(\overline{f} - \overline{v}_0)(q_i, L_i)] \cdot \overline{v}(q_i, L_i) = 0 \quad \text{for all} \quad \overline{v} \in \overline{V}.$$

Since (q_i, L_i) and $(q_i, -L_i)$ both belong to $\operatorname{crit}(\overline{f} - \overline{v}_0)$, we choose the critical point (q_i, L_i) so that $(\overline{f} - \overline{v}_0)(q_i, L_i) = \|\overline{f} - \overline{v}_0\|$. (*) now translates to the condition given.

We now show how only extreme points need be used. Let V have basis $v_1, ..., v_l$, put $P_{(q,L)} = (Lv_1(q), ..., Lv(q))$, and let $U = \{P_{(q,L)} \mid (q, L) \in Q \times B(X^*) \text{ satisfies } L(f(q) - v_0(q)) = ||f - v_0||\}$. U is a compact subset of \mathbb{R}^n , and what has been established so far simply shows that 0 is in the convex hull of U. By the finite-dimensional Krein-Milman theorem and Carathéodory's theorem, 0 is a convex linear combination of $s (\leq l+1)$ extreme points $P_{(q_1,L_1)}, ..., P_{(q_s,L_s)}$ of U. Fix i = 1, ..., s and consider the continuous linear map $L \mapsto (Lv_1(q_i), ..., Lv(q_i))$ from X^* to \mathbb{R}^n . Taking the compact $C = S(f(q_i) - v_0(q_i))$ in the result (†) cited above, it follows that there is an extreme point L_i' in $S(f(q_i) - v_0(q_i))$ such that $P_{(q_i,L_i)} = P_{(q_i,L_i')}$.

Adapting the terminology of Collatz [2] to the present vector-valued situation, call any compact subset $K \subseteq Q \times B(X^*)$ an *H*-set for the triple (V, v_0, f) if K satisfies the following two conditions:

- (1) $L(f(q) v_0(q)) = ||f v_0||$ for all $(q, L) \in K$,
- (2) for each $v \in V$ there exists $(q, L) \in K$ satisfying $L(v(q)) \leq 0$.

With this terminology, Theorem 1 shows that (i) v_0 is a best approximation to f if and only if $\{(q, L) \mid L(f(q) - v_0(q)) = ||f - v_0||\}$ is an *H*-set; (ii) If K is any *H*-set for (V, v_0, f) , then v_0 is a best approximation to f.

After Theorem 2, just as in the real-valued situation, the Kolmogorov-type characterization of Theorem 1 for finite-dimensional V can be improved as follows. If dim V = l, v_0 is a best approximation to f if and only if there is an H-set for (V, v_0, f) of cardinality $\leq l + 1$. In addition, it is easy to verify that any H-set for (V, v_0, f) contains an H-set of cardinality $\leq l + 1$ (consider the argument in the real-valued case that leads from Kolmogorov-type characterization to the $0 \in$ convex hull one in the finite-dimensional case). If $\{(q_1, L_1), ..., (q_r, L_r)\}$ is an H-set for (V, v_0, f) then v_0 is also a best approximation to f on $\{q_1, ..., q_r\}$ and $||f - v_0|| = \min_{v \in V} \max_{1 \leq i \leq r} ||f(q_i) - v(q_i)||$. So as for real-valued approximation, in principle a finite-dimensional linear vector-valued problem can be discretized.

PAUL SCHWARTZ

3. THE UNIQUENESS OF BEST LINEAR APPROXIMATION

Following Cheney and Wulbert [1], a subset K of Q is termed an α -set for subspace V if $K = \operatorname{crit}(f - v_0)$, where $f(\operatorname{in} C)$ has best approximation v_0 (in V). An α -set is thus the set of first coordinates of a certain H-set for V, and the H-sets built on α -sets are adequate to characterize any best approximation from V. Say that V satisfies condition (C) if no nonzero function in V vanishes identically on an α -set of V.

THEOREM 3. Condition (C) is necessary for best approximations out of V to be unique (when they exist at all). If X is strictly convex, condition (C) is also sufficient for unicity; but if X is not strictly convex, condition (C) is not sufficient.

Proof. Assume best approximations are unique, but suppose K is an α -set on which some nonzero v_0 in V vanishes identically. Choose f in C such that $K = \operatorname{crit}(f)$ and f has 0 as best approximation. Define h in C by $h(q) = (||v_0|| - ||v_0(q)||)(f(q)/||f||)$. We have $||h|| = ||v_0||$ and $\{(q, L) \mid L(h(q)) = ||h||\} = \{(q, L) \mid L(f(q)) = ||f||\}$. From this, the Kolmogorov-type characterization of Theorem 1 shows that 0 is a best approximation to h. But $||h(q) - v_0(q)|| \leq ||v_0||, q \in Q$, so also v_0 is a best approximation to h. Hence V satisfies condition (C).

Assume that X is strictly convex and condition (C) holds. Suppose f (not in V) has two best approximations v_1 , v_0 in V. Clearly v_1 is a best approximation to $2f - v_1$, and as $||2f - v_1 - v_0|| \leq 2||f - v_1||$, also v_0 is a best approximation to $2f - v_1$. $||2f(q) - v_1(q) - v_0(q)|| \leq$ $||f(q) - v_1(q)|| + ||f(q) - v_0(q)|| \leq 2||f - v_1||$, so for $q \in \operatorname{crit}(2f - v_1 - v_0)$ $||(f(q) - v_1(q))| + (f(q) - v_0(q))|| = ||f(q) - v_1(q)|| + ||f(q) - v_0(q)||$ and $||f(q) - v_1(q)|| = ||f(q) - v_0(q)||$. Since X is strictly convex, this implies $f(q) - v_0(q) = f(q) - v_1(q)$, so $v_1 - v_0$ vanishes on the α -set $\operatorname{crit}(2f - v_1 - v_0)$.

Finally assume X is not strictly convex. It is well known (and easy to see) that there is a one-dimensional subspace V and a point f not in V having more than one best approximation out of V. By taking the constant functions corresponding to V and f, we get a one-dimensional subspace of C(Q, X) satisfying condition (C) but not admitting unique best approximations.

Stated as a complete characterization of subspaces admitting unique best approximations, Theorem 3 was first obtained by Cheney and Wulbert [1] for $X = \mathbb{R}$, and for a setting covering the case X strictly convex in Johnson [4]. Condition (C) deserves a little more examination. When V is finitedimensional, it can readily be shown that condition (C) is equivalent to the zero and interpolation conditions on V given by Zuhovickii, Krein, and Stečkin [6] as necessary and sufficient for V to admit unique best approximations (some relaxation of their additional restrictions on X is possible). Further, if condition (C) is regarded as a uniqueness criterion, the class of α -sets is adequate to build *H*-sets characterizing any best approximation and to decide the uniqueness question. Another class of sets introduced below, related to α -sets by a minimal property, also performs both these functions.

By virtue of Zorn's lemma, two facts hold in general: given f having a best approximation v_0 in V, (1) any H-set for (V, v_0, f) contains a minimal H-set; (2) crit $(f - v_0)$ contains a compact set K minimal with respect to the property that v_0 is a best approximation to f on K. If V is *l*-dimensional, no transfinite argument is necessary and both a minimal H-set and K have cardinality $\leq l+1$.

Given f having a best approximation v_0 in V, a compact set K having property (2) will be termed an η -set for V. η -sets are thus adequate as bases for H-sets characterizing best approximations, and further they can replace α -sets in condition (C)—i.e., condition (C) is equivalent to condition (C'): no nonzero member of V vanishes identically on an η -set. Clearly (C') implies (C). If condition (C') fails, choose an η -set K for which there is a nonzero v^* in V vanishing identically on K, which we can take with $||v^*|| = 1$. Choose f in C having 0 as best approximation such that 0 is also a best approximation to f on K. Put $h(q) = (1 - ||v^*(q)||)f(q)$. ||h|| = ||f|| and $\operatorname{crit}(h) =$ $\operatorname{crit}(f) \cap \{q \mid v^*(q) = 0\} \supset K$. Given v in V, there exists $(q, L) \in Q \times B(X^*)$ such that L(f(q)) = ||f||, with $q \in K$, satisfying $L(v(q)) \leq 0$. $||h(q) - v(q)|| \ge$ $L(h(q) - v(q)) \ge L(h(q)) = L(f(q)) = ||h||$, so h has 0 as best approximation and v^* vanishes identically on the α -set crit(h). Hence (C) fails if (C') does.

For finite-dimensional V, minimal H-sets can be identified independently of any approximation problem, so η -sets are thereby identified also. Such an identification runs as follows.

d elements $(q_1, L_1), ..., (q_d, L_d)$ of $Q \times B(X^*)$ form a minimal H-set for V if and only if the following conditions hold:

(1) $L_1, ..., L_d$ are norm-one functionals attaining their norm on the unit sphere of X;

(2) all the distinct functionals in pairs having the same first coordinate attain their norm at some one point of the unit sphere of X;

(3) there are unique positive barycentric coordinates $\lambda_1, ..., \lambda_d$ such that $\sum_{i=1}^d \lambda_i L_i(v(q_i)) = 0$ for all v in V.

(3) in turn can be given the following matrix formulation. Choosing a basis $v_1, ..., v_l$ for V, (3) holds just in case the $d \times l$ matrix $A = [L_i v_j(q_i)]_{i=1,...,d;j=1,...,l}$ has the following two properties:

(1) rank A = d - 1.

(2) There are d-1 columns of A, say with indices $j_1 < \cdots < j_{d-1}$, such that for i = 1, ..., d det $A[1, ..., i-1, i+1, ..., d | j_1, ..., j_{d-1}] \neq 0$ and

PAUL SCHWARTZ

all the $(-1)^i$ det $A[1,..., i-1, i+1,..., d | j_1,..., j_{d-1}]$ have the same sign. $(A[i_1,..., i_u | j_1,..., j_v]$ denotes the $u \times v$ submatrix of A formed from the intersections of the rows of A having indices $i_1 < \cdots < i_u$ with the columns of A having indices $j_1 < \cdots < j_v$.)

REFERENCES

- 1. E. W. CHENEY AND D. E. WULBERT, The existence and unicity of best approximations, Math. Scand. 24 (1969), 113-140.
- 2. L. COLLATZ, Inclusion theorems for the minimal distance in rational Tschebyscheff approximation with several variables, *in* "Approximation of Functions" (H. L. Garabedian, Ed.), 1965.
- 3. L. W. JOHNSON, Uniform approximation of vector-valued functions, Numer. Math. 13 (1969), 238-244.
- 4. L. W. JOHNSON, Unicity in the uniform approximation of vector-valued functions, Bull. Austral. Math. Soc. 3 (1970), 193-198.
- 5. G. Köthe, "Topological Vector Spaces I," New York, 1969.
- S. I. ZUHOVICKIĬ AND S. B. STEČKIN, On the approximation of abstract functions, Amer. Math. Soc. Transl. 16 (1960), 401–406.