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1. INTRODUCTION

Given a real normed linear space X and a compact Hausdorff space Q,
let CCQ, X) denote the space of continuous functions from Q to X. We
equip C with the uniform norm defined by II h II = maxqEQ II h(q)ll, hE C.
Best linear approximation of functions in these normed function spaces has
been systematically studied by Zuhovickii, Krein, and Steckin [6], and
L. W. Johnson [3], [4]. Our aim in this note is to obtain characterization
and uniqueness theorems analogous to those of the real-valued case
(X = the real field IR) by a direct reduction to the known results of the
real-valued situation, for the most part. I am much indebted to Professor
E. W. Cheney for the suggestion that this should be possible.

2. CHARACTERIZATION THEOREMS

Let x* denote the dual space, and B(X*) the closed unit ball of X*. In
what follows x* carries the weak-star topology.

Given / E CCQ, X), define the real-valued function JE CCQ X B(X*), IR)
by J(q, L) = L(f(q», (q, L) E Q X B(X*). (With the product topology,
Q X B(X*) is compact.) It is easy to verify that the uniform norm of J,
IIJII = max(q.L)EQXB(X*) I!(q, L)I = II/II; and that the critical point set of J,
crit(J) = {(q, L) I L(f(q» = ±II/II}. Note thatJ(q, -L) = -J(q, L).

From this, we see at once that /'r--+ J is a norm-preserving linear map of
CCQ, X) into CCQ X B(X*), IR), so subspaces V C CCQ, X) map onto sub
spaces V = {v I v E V} C CCQ X B(X*), IR). Hence the problem of best
linear approximation in C(Q, X) is transferred into the corresponding real
valued problem in C(Q X B(X*), IR). Explicitly: given a subspace V C CCQ, X)
and/E CCQ, X), Vo in Vis a best approximation out of Vto/if and only if Vo
in V is a best approximation to f.
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In Theorems 1 and 2 to follow, we simply convert classic characterizations
of real-valued best approximation into vector-valued ones.

THEOREM 1 (Ko1mogorov-type characterization). Let V be a subspace of
CCQ, X), f E C. A necessary and sufficient condition that Vo (in V) be a best
approximation to f is the following:

(K) for each v E V there exists (q, L) E Q X B(X*) such that
L(f(q) - vo(q)) = Ilf - VO II and satisfying L(v(q)) :::;; 0.

Moreover, if for each v in V, v oF vo , there exists (q, L) with
L(f(q) - vo(q)) = Ilf - VO II, and satisfying L(v(q)) < 0, Vo is the unique best
approximation.

Proof In CCQ X B(X*), ~) Vo is a best approximation to ] if and only
if the well-known Kolmogorov condition holds: for each vE V there exists
(q, L) E crit(J - vo) satisfying (J (q, L) - vo(q, L)) . v(q, L) :::;; 0. Since (q, - L)
and (q, L) are simultaneously critical points of] - Vo , the asserted character
ization follows.

We note that Theorem 1 at once implies the necessity (the sufficiency
is clear) of the following characterization of best approximations involving
only critical points (for fE C, crit(f) = {q E Q Illf(q)11 = Ilfll}).

A necessary and sufficient condition that Vobe best tofis that for each v in V
there exists q E crit(f - vo) such that Ilf - VO II :::;; Ilf(q) - v(q)ll. With more
effort, this characterization was obtained in the somewhat different setting
of Johnson [3].

The characterization as formulated in Theorem I was obtained in a setting
covering the case of X a smooth finite-dimensional normed space in
Johnson [3], and by Zuhovickil for X a Hilbert space (see [6]).

In practice, simpler characterizations may result from restricting the
functionals in B(X*) to the set Ep B(X*) of extreme points of B(X*).
I.e., condition (K) in Theorem 1 may be replaced by (Ke), where (Ke) is
obtained from (K) by just replacing "(q, L) E Q X B(X*)" by "(q, L) E Q X

Ep B(X*)." The following argument shows that this is possible. Given q E Q,
let S(f(q) - vo(q)) = {L E B(X*) I L(f(q) - vo(q)) = Ilf(q) - vo(q)[[}; this
set is weak-star compact and an extremal subset of B(X*), so the extreme
points of S(f(q) - vo(q)) are precisely the extreme points of B(X*) in
S(f(q) - vo(q)). Now suppose L in S(f(q) - vo(q)) satisfies L(v(q)) :S;; 0,
as in (K). The evaluation map rp: L 1--+ L(v(q)) is weak-star continuous and
a = minLEs(t(q)_v (q» L(v(q)) :::;; O. We now require the following result from

o
extreme point theory (see Kothe [5, Section 25,p. 333]): (t) If Tis a continuous
linear map of one locally convex space E into another, then for any compact
C C E, every extreme point of the image T(C) is the image of some extreme
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point of C. a is an extreme point of ep[S(f(q) - vo(q»] C IR, so by (t) there is
an extreme point L' of S(f(q) - vo(q» satisfying a = ep(L') = L'(v(q».

In the examples we now discuss, (Ke) will be used as the characterizing
condition.

EXAMPLE 1. Uniform Approximation in c(Q, (ex)n). The uniform norm is
II h II = maxqeo max1";;i";;n Ihi(q)l, h = (hI, ... , hn) in C. The dual (t",n)* = tIn,
SO has extreme points {±ei , i = 1,... , n} (e1 ,... , en are the standard unit
coordinate vectors of IRn). So, (q, L) E Q x Ep B«t",n)*) satisfies L(h(q» =
II h II just in case II h(q)ll", = II h II, and L E {sgn hiCq) . ej II hiCq)! = II h(q)ll",}.

With these observations recorded, Theorem 1 assumes the following
concrete form.

Let V be a subspace of CCQ, ('"n), f = (fl , ... ,fn) E C. Vo = (VOl"'" VOn)
in Vis a best approximation tofif and only if the following condition holds:

For each v = (VI"'" Vn) in V there exist q E Q and i = 1,..., n such that
I/;(q) - vOi(q)1 = Ilf - Vo II, satisfying (/;(q) - VOi(q» . Vi(q) ~ o.

EXAMPLE 2 Uniform Approximation in c(Q, tIn). The uniform norm is
II h II = maxqeQ (I h1(q)1 + ... + I hn(q)I), h in C. The dual (t1n)* = t",n,
so has extreme points {L:~l uiei: Ui = ±1}. Hence (q, L) E Q x Ep B«{ln)*)
satisfies L(h(q» = II h II just in case II h(q)111 = II h II, and

L E \ L sgn h;(q) . ej + L Ui' ei [ Ui = ±1
L:hj(qJ"'O i:hj(qJ=O

for the i such that hi(q) = ol.
Theorem 1 here reads as follows.
Let V be a subspace of c(Q, (In), f = (fl ,.··,fn) E C. Vo = (VOl , ... , Von)

in V is a best approximation to f if and only if the following condition holds:
For each v = (VI'"'' Vn) in V there exists q such that 11/(q) - vo(q)111 =

Ilf - Vo II, satisfying

I sgn(jj(q) - Vo/q») . v;(q) ~ L I vi(q)l.
j:fj(q)-voj(ql",O i:fj(q)-vOj(q)~O

THEOREM 2 (0 E convex hull finite-dimensional characterization). Let V
be an I-dimensional subspace of C(Q, X). The following condition is necessary
and sufficient that Vo (in V) be a best approximation to f:

There exist r elements (q1 , L1), .. ·, (qr , Lr) E Q x B(X*), r ~ I + 1, such
that L(f(qi) - VO(qi») = Ilf - Vo II, and barycentric coordinates (AI'"'' Ar)
such that for all v in V, A1L1(v(q1) + .. ,+ ArLrCv(qr» = O.

In addition, the elements (qi' Li) may be chosen in Q X Ep B(X*).
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Proof In C(Q X B(X*), lffi), V is also I-dimensional and the classic
oE convex hull characterization that Vo in V be a best approximation to J
reads: there are r (~ 1+ 1) points (q1' L1), ... , (qr , Lr) E crit(J - vo) and
barycentric coordinates (AI,"" Ar ) satisfying (*)

r

L Ai[sgn(J - VO)(qi , Li)] . V(qi , Li) = 0
i~l

for all vE V.

Since (qi' Li) and (qi' -Li) both belong to crit(J - vo), we choose the
critical point (qi , Li) so that (J - VO)(qi , Li ) = II J - Vo II. (*) now translates
to the condition given.

We now show how only extreme points need be used. Let V
have basis Vt ,... , V!, put P(q.L) = (Lv1(q), ... , Lv(q», and let U =

{P(q.L) I (q, L) E Q x B(X*) satisfies L(f(q) - vo(q» = III - voll}. U is a
compact subset of lffin, and what has been established so far simply shows that
ois in the convex hull of U. By the finite-dimensional Krein-Milman theorem
and Caratheodory's theorem, 0 is a convex linear combination of s (~ 1+ 1)
extreme points P(ql.L

1
) , ••• , P(q.,L) of U. Fix i = 1, ... , s and consider the

continuous linear map L f--+ (LVt(qi),"" LV(qi» from x* to lffin. Taking the
compact C = S(f(qi) - VO(qi» in the result (t) cited above, it follows that
there is an extreme point L;' in S(f(qi) - VO(qi» such that P(q,L) = P(q.L') •

Adapting the terminology of Collatz [2] to the present ~ector-v~l~ed
situation, call any compact subset K C Q x B(X*) an H-set for the triple
(V, Vo ,f) if K satisfies the following two conditions:

(1) L(f(q) - vo(q» = III - Vo II for all (q, L) E K,

(2) for each v E V there exists (q, L) E K satisfying L(v(q» ~ O.

With this terminology, Theorem 1 shows that (i) Vo is a best approximation
tolif and only if {(q, L) I L(f(q) - vo(q» = III - Vo II} is an H-set; (ii) If K
is any H-set for (V, Vo ,f), then Vo is a best approximation to f

After Theorem 2, just as in the real-valued situation, the Kolmogorov-type
characterization of Theorem 1 for finite-dimensional V can be improved as
follows. If dim V = I, Vo is a best approximation to I if and only if there is
an H-set for (V, Vo ,f) of cardinality ~ I + 1. In addition, it is easy to verify
that any H-set for (V, Vo ,f) contains an H-set of cardinality ~ 1+ 1
(consider the argument in the real-valued case that leads from Kolmogorov
type characterization to the 0 E convex hull one in the finite-dimensional case).
If{(qt , Lt), ... , (qr , Lr)} is an H-set for (V, Vo ,f) then Vo is also a best approxi
mation to I on {qt ,... , qr} and III - Vo II = minvEv maxt';;i';;r Ilf(qi) - v(qi)ll.
So as for real-valued approximation, in principle a finite-dimensional linear
vector-valued problem can be discretized.
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3. THE UNIQUENESS OF BEST LINEAR ApPROXIMATION

Following Cheney and Wulbert [1], a subset K of Q is termed an ex-set
for subspace V if K = crit(f - vo), where f (in C) has best approximation Vo
(in V). An ex-set is thus the set of first coordinates of a certain H-set for V,
and the H-sets built on ex-sets are adequate to characterize any best approxi
mation from V. Say that V satisfies condition (C) if no nonzero function in V
vanishes identically on an ex-set of V.

THEOREM 3. Condition (C) is necessary for best approximations out of V
to be unique (when they exist at all). IfX is strictly convex, condition (C) is also
sufficientfor unicity; but ifX is not strictly convex, condition (C) is not sufficient.

Proof Assume best approximations are unique, but suppose K is an
ex-set on which some nonzero Vo in V vanishes identically. Choose f in C
such that K = crit(j) and f has 0 as best approximation. Define h in C by
h(q) = ([I VoII --II vo(q)[I)(j(q)/llfll). We have II h II = II Vo II and {(q, L) IL(h(q» =
II h II} = {(q, L) I L(j(q» = [[fll}. From this, the Kolmogorov-type character
ization of Theorem I shows that 0 is a best approximation to h. But
\I h(q) - vo(q)11 ~ II Vo II, q E Q, so also Vo is a best approximation to h. Hence
V satisfies condition (C).

Assume that X is strictly convex and condition (C) holds. Suppose f
(not in V) has two best approximations VI, Vo in V. Clearly VI is a best
approximation to 2f - VI' and as 112f - VI - Vo [I ~ 211/ - VI [I, also
Vo is a best approximation to 2f - VI' 112f(q) - vl(q) - vo(q)11 ~
Ilf(q) - vl(q)11 + Ilf(q) - vo(q)11 ~ 211f - VIII, so for q E crit(2f - VI - Vo)
1I(j(q) - vl(q» + (j(q) - vo(q»11 = II f(q) - vl(q)11 + II f(q) - vo(q)l[ and
Ilf(q) - v1(q)!! = IIf(q)- vo(q)ll. Since X is strictly convex, this implies
f(q) - vo(q) = f(q) - v1(q), so VI - Vovanishes on the ex-set crit(2f - VI - vo).

Finally assume X is not strictly convex. It is well known (and easy to see)
that there is a one-dimensional subspace V and a point f not in V having
more than one best approximation out of V. By taking the constant functions
corresponding to V and J, we get a one-dimensional subspace of C(Q, X)
satisfying condition (C) but not admitting unique best approximations.

Stated as a complete characterization of subspaces admitting unique best
approximations, Theorem 3 was first obtained by Cheney and Wulbert [1]
for X = IR, and for a setting covering the case X strictly convex in Johnson [4].
Condition (C) deserves a little more examination. When V is finite
dimensional, it can readily be shown that condition (C) is equivalent to the
zero and interpolation conditions on V given by Zuhovickii, Krein, and
Steckin [6] as necessary and sufficient for V to admit unique best approxi
mations (some relaxation of their additional restrictions on X is possible).
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Further, if condition (C) is regarded as a uniqueness criterion, the class of
ex-sets is adequate to build H-sets characterizing any best approximation and
to decide the uniqueness question. Another class of sets introduced below,
related to ex-sets by a minimal property, also performs both these functions.

By virtue of Zorn's lemma, two facts hold in general: givenjhaving a best
approximation Vo in V, (1) any H-set for (V, vo,f) contains a minimal H-set;
(2) crit(f - vo) contains a compact set K minimal with respect to the property
that Vo is a best approximation to f on K. If V is [-dimensional, no transfinite
argument is necessary and both a minimal H-set and K have cardinality
:::;; [+ l.

Given I having a best approximation Vo in V, a compact set K having
property (2) will be termed an 1]-set for V. 1]-sets are thus adequate as bases
for H-sets characterizing best approximations, and further they can replace
a-sets in condition (C)-i.e., condition (C) is equivalent to condition (C'):
no nonzero member of V vanishes identically on an 1]-set. Clearly (C') implies
(C). If condition (C') fails, choose an 'YJ-set K for which there is a nonzero v*
in V vanishing identically on K, which we can take with II v* II = 1. Choosel
in C having 0 as best approximation such that 0 is also a best approximation
to I on K. Put h(q) = (1 -II v*(q)ll)f(q). II h II = IIII1 and crit(h) =

crit(f) n {q I v*(q) = O} ":) K. Given v in V, there exists (q, L) E Q X B(X*)
such that L(J(q» = 11111, with q E K, satisfying L(v(q» :::;; 0.11 h(q) - v(q)11 ;?o
L(h(q) - v(q» ;?o L(h(q» = L(f(q» = II h II, sohhasOas best approximation
and v* vanishes identically on the ex-set crit(h). Hence (C) fails if (C') does.

For finite-dimensional V, minimal H-sets can be identified independently
of any approximation problem, so 1]-sets are thereby identified also. Such an
identification runs as follows.

d elements (ql , LI ), ... , (qd , L d) of Q X B(X*) form a minimal H-set for V
if and only if the following conditions hold:

(1) L 1 , •.• , L d are norm-one functionals attaining their norm on the
unit sphere of X;

(2) all the distinct functionals in pairs having the same first coordinate
attain their norm at some one point of the unit sphere of X;

(3) there are unique positive barycentric coordinates '\'1 ,... , Ad such that
L:~1 AiLi(v(qi» = 0 for all v in V.

(3) in turn can be given the following matrix formulation. Choosing
a basis VI ,... , Vz for V, (3) holds just in case the d x [ matrix
A = [LiVj(qi)]i~L ....d;j~I .....Zhas the following two properties:

(1) rank A = d - l.

(2) There are d - 1 columns of A, say with indices A < ... < ld-l ,
such that for i = I, ... , d detA[1, ... , i - 1, i + 1, ... , dill ,...,id-l] =p 0 and
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all the (-I)i det A[I, ... , i-I, i + 1,... , d IA,..., jd-l] have the same sign.
(A[il ,..., iu IA ,..·,jv] denotes the u X v submatrix of A formed from the
intersections of the rows of A having indices il < ... < iu with the columns
of A having indicesjl < ... < jv .)
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